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ABSTRACT 

 

Amine-based absorption is currently the most advanced and cost-effective means of post-

combustion CO2 capture among the different technologies that can be used (Dutcher et al., 2015). 

Much work has been done to reduce energy consumption, which constitutes one of the major 

penalties to the absorption process. Therefore, when it comes the need to develop new energy-

efficient solvents for the successful implementation of CO2-capture worldwide. An alternative to 

the widely used ethanolamine (MEA) is an aqueous solution of 2-amino-2-methyl-1-propanol 

(AMP), promoted with piperazine (PZ). It has been demonstrated that an aqueous blend 3.0 M 

AMP/ 1.5 M PZ, known as CESAR1, exhibits lower energy consumption (Mangalapally and 

Hasse, 2011), lower degradation rates (Lepaumier et al., 2009), and higher loading capacity 

compared to MEA (Choi et al., 2007). 

 

A reliable kinetics model must be developed for an accurate design of CO2 absorption columns. 

Data for CO2 absorption kinetics using initially unloaded PZ/H2O, AMP/H2O and AMP/PZ/H2O 

are available in the open literature (Alper, 1990; Khan et al., 2019; Samanta and Bandyopadhyay, 

2007; Seo and Hong, 2000; Sodiq et al., 2014; Xu et al., 1996; Yih and Shen, 1988). However, 

data for AMP and AMP/PZ CO2-loaded-aqueous solutions are not available. This work wants to 

fill these experimental gaps to characterize better solvent kinetics at industrial conditions, since 

the CO2-loading will change along the absorber. 

 

For this work, a string of discs contactor (SDC) will be used to measure the absorption kinetics. 

The operating procedure of kinetics experiments with SDC is accurately described by Hartono et 

al. (Hartono et al., 2021). The overall mass transfer coefficient Kg (mol m-2 s-1 kPa-1) will be 

calculated using Eq  1. It only involves the measured molar flux, 𝑁𝐶𝑂2
, and the driving force, 

logarithm mean pressure difference (𝐿𝑀𝑃𝐷), that can be assessed according to Eq  2. 

 

𝐾𝑔 =
𝑁𝐶𝑂2

𝐿𝑀𝑃𝐷
 

Eq  1 
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Eq  2 

 

𝑃𝐶𝑂2,𝑏𝑢𝑙𝑘
𝑖𝑛  and 𝑃𝐶𝑂2,𝑏𝑢𝑙𝑘

𝑜𝑢𝑡  represent respectively the inlet and outlet CO2-partial pressure in the 

column while 𝑃𝐶𝑂2

∗,𝑖𝑛
 and 𝑃𝐶𝑂2

∗,𝑜𝑢𝑡
 represent the partial pressure at the interface that will be calculated 

using published e-NRTL model (Hartono et al., 2021). 
 

Kinetics data will then be interpreted according to zwitterionic and termolecular mechanisms 

providing the kinetics constant and will be then compared to already available experimental data 

(Ali, 2005; Alper, 1990; Seo and Hong, 2000; Sodiq et al., 2014; Xu et al., 1996; Yih and Shen, 

1988).  

 

Validation of the setup was performed with the benchmark solvent for CO2-capture, ethanolamine, 

for which kinetics data are largely available  (Luo et al., 2012; Versteeg et al., 1996) and shown in 

Figure 1. 

 

 
Figure 1: Arrhenius Plot: II order kinetics constant k2 vs 1/T 
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