

17th International Conference on Greenhouse Gas Control Technologies GHGT-17

20th -24th October 2024, Calgary Canada

Viscosity and Density data for the CESAR1 solvent.

Diego Morlando^a, Ardi Hartono^a, Hanna K. Knuutila^{a,*}

^aDepartment of Chemical Engineering, NTNU, NO-7491 Trondheim, Norway

Abstract

Global warming by anthropogenic CO₂ emissions is a major issue and technologies to slow down this process need to be commercialized. Amine-based absorption is the most mature technology for post-combustion CO₂ capture, Dutcher et al. (2015); Morlando (2024). Ethanolamine (MEA) has been considered the solvent benchmark for CO₂ capture by chemical absorption and many data for different properties are available. Feron et al. (2020) proposed an aqueous blend of 3 M 2-amino-2-methyl-1-propanol (AMP) and 1.5 M piperazine (PZ), also known as CESAR1, as the new benchmark for this technology.

The CESAR1 solvent has been widely studied and piloted, however, a comprehensive literature review of the available data for this solvent was performed and outlined that experimental gaps exist, Morlando et al. (2024). Viscosity and density data for CO₂-loaded and CO₂-unloaded solutions are missing in the open literature even though necessary in the design of a gas-liquid contactor.

This work wants to fill these experimental gaps by measuring the physical properties of CESAR1 solvent as a function of temperature and CO₂ concentration. Furthermore, an uncertainty analysis and correlations for these properties will be developed and made available for use when modelling absorption kinetics and vapor-liquid equilibrium.

This work will use an Anton Paar Density meter DMA 4500 M coupled with a Lovis 2000ME viscosity meter, to measure the density and viscosity simultaneously. The DMA 4500 was calibrated by air and ultra-pure H₂O at 298.15 K. The methodology and description of the apparatus can be found in Hartono and Knuutila (2023). The apparatus has been validated by using 30 wt.% MEA. The absolute average relative error (AARD) calculated by Eq 1 can be used to quantify the error between the measurements from this work, $y_{this work}$, and the measurements available in the open literature, $y_{reference}$.

$$AARD = \sum \frac{y_{this work} - y_{reference}}{y_{this work}} \cdot 100 \qquad Eq \ l$$

The AARD for the density measurements is 0.03% and 0.05% on the Hartono et al. (2014) and Han et al. (2012) datasets respectively. The AARD for the viscosity measurements is 1.7% and 1.4% for the Hartono et al. (2014) and Arachchige (2013) datasets respectively.

Preliminary results of CESAR1 measurements are available in Figure 1.

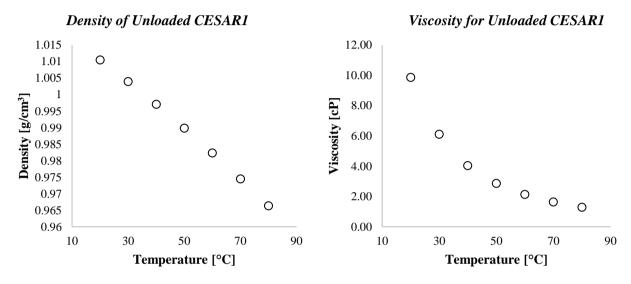


Figure 1: Density and viscosity experimental results for unloaded CESAR1 solvent.

Acknowledgements

This research has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101096521 (the AURORA project).

References

- Arachchige, U. (2013). Viscosities of Pure and Aqueous Solutions of Monoethanolamine (MEA), Diethanolamine (DEA) and N-Methyldiethanolamine (MDEA).
- Dutcher, B., Fan, M., & Russell, A. G. (2015). Amine-Based CO2 Capture Technology Development from the Beginning of 2013—A Review. ACS Applied Materials & Interfaces, 7(4), 2137-2148. https://doi.org/10.1021/am507465f

* Corresponding author. Tel.: +47-73594119, E-mail address: hanna.knuutila@ntnu.no

- Feron, P. H. M., Cousins, A., Jiang, K., Zhai, R., & Garcia, M. (2020). An update of the benchmark postcombustion CO2-capture technology. *Fuel*, 273, 117776. https://doi.org/https://doi.org/10.1016/j.fuel.2020.117776
- Han, J., Jin, J., Eimer, D. A., & Melaaen, M. C. (2012). Density of Water (1) + Monoethanolamine (2) + CO2 (3) from (298.15 to 413.15) K and Surface Tension of Water (1) + Monoethanolamine (2) from (303.15 to 333.15) K. *Journal of Chemical & Engineering Data*, 57(4), 1095-1103. https://doi.org/10.1021/je2010038
- Hartono, A., & Knuutila, H. K. (2023). Densities, Viscosities of Pure 1-(2-Hydroxyethyl) Pyrrolidine, 3-Amino-1-Propanol, Water, and Their Mixtures at 293.15 to 363.15 K and Atmospheric Pressure. *Journal of Chemical & Engineering Data*, 68(3), 525-535. https://doi.org/10.1021/acs.jced.2c00648
- Hartono, A., Mba, E. O., & Svendsen, H. F. (2014). Physical Properties of Partially CO2 Loaded Aqueous Monoethanolamine (MEA). *Journal of Chemical & Engineering Data*, 59(6), 1808-1816. https://doi.org/10.1021/je401081e
- Morlando, D. B., Vanja; Delic, Asmira; Hartono, Ardi; Hallvard F. Svendsen; Kvamsdal Hanne; da Silva Eirik; Knuutila K. Hanna. (2024). Available data and knowledge gaps of the CESAR1 solvent system (Under submission).

Keywords: Chemical Absorption; Amines; CESAR1; Physical Properties

* Corresponding author. Tel.: +47-73594119, E-mail address: hanna.knuutila@ntnu.no