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Abstract 

Solutions for advanced control of CO2 capture processes have been developed and tested 

on pilot scale, with full-height absorber and desorber columns, representative of operation 

on an industrial scale. This paper presents new results from live demonstrations of non-

linear model predictive control (NMPC) in pilot scale, using the HiPerCap solvent HS3 

on the SINTEF Tiller CO2LAB pilot, including ongoing work in the AURORA project, 

to build on the established results in this field, hereunder published case studies and pilot 

demonstrations. 

The results indicate that industrial deployment of NMPC for solvent-based CO2 capture 

processes is imminent, and that it will constitute a valuable tool to automate the operation. 
The demonstrated outcome for the end-users is energy-optimal operation handling all 

operating conditions, with less operator interventions. Furthermore, the approach has 

possible extensions to combat advanced operational challenges. 

Keywords: Absorption, nonlinear model predictive control, optimal control, OPEX 

reduction, flexible operation 

1. Introduction 

For solvent-based post-combustion carbon capture (PCC) plants, the published literature 
contains several investigations into the use of advanced process control for optimal 

operation, albeit mainly for simulated case-studies. Panahi & Skogestad (2011) assessed 

a PCC process with self-optimizing control, using existing conventional PI(D) controllers 

for economically efficient operation, where selecting controlled variables that are suitable 

across a wide range of operating conditions proved challenging. Hereunder, choosing 

temperature(s) to control for the desorber, and the target values thereof, is a non-trivial 

task (Mejdell et al., 2017). In a follow-up study, Panahi & Skogestad (2012) compared 

several control structures with linear MPC. In terms of performance the investigations 

qualified MPC as a suitable approach for such a capture process, although the MPC was 

costly to establish compared to effective use of the base-layer controllers. Inspired by 

these indications, particularly the observed linearity between reboiler heat flux and 

optimal solvent rate, Arce et al. (2012) studied MPC for a simulated PCC facility, where 
the reboiler was the focal point of the study. Interestingly, the study found promising 

potential for cost savings by exploiting time-varying price regimes for energy and CO2, 

like the ideas investigated by Kvamsdal et al. (2018). Furthermore, Wu et al. (2020) made 

a comprehensive review of flexible operation of PCC plants via advanced process control, 

hereunder considering the use of (N)MPC. They point out an observed gap, where the 

simple data-driven models are insufficiently accurate, while the rigorous first-principles 
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models are too complex to be calculated efficiently and robustly. The goal of the work 

presented here is to address the gap in these findings regarding the suitability of (N)MPC 

for optimization and control of PCC processes. The demonstrated results address the 

reported challenges with computational efficiency and robustness, to establish NMPC 

with first-principles models as a viable solution for industrial use in real time. 

Recently, NMPC demonstration projects have revealed the possibility of explicit and 

simultaneous control of capture rates and energy costs (Hauger et al., 2019). CO2 capture 

rates were controlled either instantaneously or to average values (e.g., daily), while 
energy usage was minimized. Applicability was demonstrated for a wide range of flue 

gas conditions and targeted CO2 capture rates. The NMPC showed promising results 

when tested in operation, using the CESAR1 solvent (Mejdell et al., 2022). Kvamsdal et 

al. (2018) argue that an NMPC will perform similarly or better than an attentive, 

experienced plant operator, as demonstrated at the Technology Centre Mongstad (TCM) 

pilot facility. Additionally, Mejdell et al. (2022) reported that the NMPC can maintain 

acceptable lean loading during periods where the energy input is heavily restricted. This 

functionality is particularly useful for when optimal use of excess heat as reboiler duty, 

with varying availability, in accordance with the conclusions of Arce et al. (2012), where 

the lean solvent loading was declared a key variable of interest for cost optimization. This 

concept is readdressed in the work presented here. 

Chikukwa et al. (2012) reviewed the available literature on dynamic modeling of 

absorption-based CO2 capture processes, including identification of knowledge gaps. 

They highlighted the need for understanding the transient behavior of capture plants when 

operating conditions change and the role of dynamic models thereof, particularly for 

power plants as target upstream processes. While they acknowledged the advances in 

dynamic modeling, they also identified the notable lack of model validation with dynamic 

data and the observation that most models are based on steady-state data. Nevertheless, 

headway has been made since, e.g., with the mentioned NMPC demonstration projects. 

In the currently ongoing Horizon Europe (HEU) project AURORA, the NMPC models 

used in previous demonstrations are being further developed and improved to meet 

industrial requirements, hereunder simplifications for model efficiency and robustness. 
Pilot-scale demonstrations will be made for both Tiller and TCM pilot facilities using the 

CESAR1 solvent. Results from preliminary pilot-scale NMPC tests for various operating 

scenarios are presented in Section 4 and indicate that NMPC is not only viable but can 

enable improved flexibility and energy efficiency of the operation. 

2. Model 

While the exact model developed for the PCC process is too detailed to be presented in 

full in this paper, some fundamental modeling principles that were found to be critical for 
success are discussed. The NMPC models are mechanistic, dynamic models developed 

from first principles, including energy balances and mass balances for all process units, 

such as the absorber, desorber, reboiler, and heat exchangers. Crucially, as highlighted by 

Chikukwa et al. (2012) and Wu et al. (2020), the model equations must be implemented 

in a computationally efficient way to get appropriate real-time performance. To achieve 

this, the models have inherent simplifications to arrive at a level of balanced complexity 

where both the computational efficiency and the accuracy of the model are adequate. 

A module-based strategy has been chosen for implementation of the models, with a 

tripartite division as shown in Figure 1. The model consists of a generic part, a solvent-
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specific part, and a plant-specific part. This promotes reusability and versatility of the 

common, general principles of the capture processes, which eases the deployment of 

NMPC for a known solvent in a new capture plant, e.g., or the introduction of a new 

solvent in the NMPC for known plants. 

 
Figure 1: Tripartite, modular approach to process modeling for deployment with NMPC. 

3. Advanced Process Control System 

For the present work, the Cybernetica CENIT software suite was used. The central 

building blocks of the CENIT NMPC are shown in Figure 2. The core is the mechanistic 

process model, as mentioned in Sec. 2, which is formulated in C/C++ for numerical 

efficiency and compliance with the other components of the framework. 

 
Figure 2: Block diagram illustrating the central components of the NMPC application(s), 

including the interconnection between them. 

3.1. Nonlinear Kalman Filter 

A crucial difference between in-silico studies of PCC processes and industrial 

implementations is the need for accurate online state and parameter estimation schemes. 

Without them, any model-based controller may be vulnerable to plant-model mismatch, 

e.g., caused by changes in amine concentrations due to degradation, loss of solvent 

through emissions, water balance issues, and other unforeseen process changes. The 

online estimation scheme is necessary to align the mechanistic process model with the 

measured plant behavior, to enable accurate predictions for near-future operation.  

The Kalman filter estimator is a two-step process where a priori estimates are obtained 

based on the previous estimate in time by model prediction, after which the a posteriori 

estimates are found by correcting the model predictions with the measurements. The 

model predictions for states, parameters and measurements are shown in Eqs. (1)-(3), 

including process noise (�̅�𝑘−1) and measurement noise (�̅�𝑘). The following measurement 

correction is shown in Eq. (4). 

Model prediction:  

�̅�𝑘 = 𝒇(�̂�𝑘−1, �̂�𝑘−1, 𝒖𝑘−1, �̅�𝑘−1) a priori state estimates (1) 

�̅�𝑘 = �̂�𝑘−1 + �̅�𝑘−1  a priori parameter estimates (2) 

�̅�𝑘 = 𝒈(�̅�𝑘 , �̂�𝑘 , 𝒖𝑘−1) + �̅�𝑘 a priori measurement estimates (3) 
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Measurement correction:  

[
�̂�𝑘
�̂�𝑘
] = [

�̅�𝑘
�̅�𝑘
] + 𝑲(𝑘)(𝒚𝑀,𝑘 − �̅�𝑘) a posteriori state and param. est. (4) 

3.2. NMPC 

The functionality of the CENIT NMPC is described in more detail by Foss & Schei 

(2007). At its core, it is based on a sequential quadratic programming (SQP) algorithm 

inspired by the work of Biegler and coworkers (de Oliveira & Biegler, 1995). The general 

cost function to be minimized is shown in Eq. (5), subject to the conditions specified in 

Eqs. (6)-(8). This approach will find the optimal input moves for the specified control 

horizon while penalizing setpoint deviations (Z – Zref), input moves (ΔU) and constraint 

violations (ε), each with their respective weights (Q, S, r1 and r2).  

𝑚𝑖𝑛
𝛥𝑼

𝐽 =
1

2
(𝒁 − 𝒁𝑟𝑒𝑓)

𝑇
𝑸(𝒁− 𝒁𝑟𝑒𝑓) +

1

2
(𝛥𝑼𝑇𝑺𝛥𝑼) + 𝒓1

𝑇𝜺 +
1

2
𝜺𝑇𝑑𝑖𝑎𝑔(𝒓2)𝜺 (5) 

s.t 𝐱𝑘+𝑗 = 𝐟(𝐱𝑘+𝑗−1, 𝐮𝑘+𝑗−1, 𝐯𝑘) 

 𝐳𝑘+𝑗 = 𝐡(𝐱𝑘+𝑗 , 𝐮𝑘+𝑗)  
Model predictions (6) 

 𝐙min − 𝛆 < 𝐙 < 𝐙max + 𝛆  

 𝟎 ≤ 𝛆 ≤ 𝛆max  

Controlled variables (CVs) soft 

constraints with slack variables 
(7) 

 𝐔min ≤ 𝐔 ≤ 𝐔max  

 Δ𝐔min ≤ Δ𝐔 ≤ Δ𝐔max  
Manipulated var. (MV) constraints, 

absolute and relative constraints 
(8) 

For the PCC process, the NMPC has two CVs of central importance. These are the CO2 

capture rate, which is controlled to a specified setpoint, and the specific reboiler duty, 

which is minimized. Furthermore, the lean loading is constrained in the optimization 

criterion to avoid build-up of dissolved CO2 in the lean solvent over time. The available 

MVs are the reboiler duty and the flow rate of lean solvent into the absorber top, which 

are both controlled within their respective constraints. In the demonstrated application, 

the sample time is 30 seconds, with a prediction horizon of 5 hours, hence the strict 

requirements for computational efficiency.  

4. Results 

The test scenarios were designed to address the existing shortcomings and research gaps 

highlighted by Mejdell et al. (2022). Additional tests were performed but are omitted from 

this work for brevity. The omitted demonstrations include temporary reboiler stops (e.g., 

for power plant grid stabilization), capture rate setpoint changes and flue gas ramps (both 

with and without prior knowledge, for feedforward functionality). 

4.1. Scenario I: Energy availability for reboiler is heavily restricted. 

A live demonstration of the proposed NMPC during limited availability of energy is 

shown in Figure 3, Scenario I. As a result of the reduced energy availability, the CO2 

capture rate is reduced temporarily. Whereas a short-sighted controller, i.e., PID or a feed-

forward controller, without knowledge of the dynamics and the constraint regions, would 

attempt to maintain a high capture rate, the NMPC backs down on the capture rate for the 

time being to prevent an unwanted increase in lean loading. It is observed that regaining 
the capture rate is relatively quick, given that lean loading is appropriately low compared 
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to what it would take to regain the lean loading once it has escalated. The lean loading 

was directly constrained in the cost function to motivate this behavior. 

4.2. Scenario II: Load following with large, rapid changes in inlet CO2 flow rate. 

During another live demonstration, a load following scenario was tested, as shown in 

Figure 3, Scenario II. In this case, the flue gas is changed rapidly and unpredictably to 

replicate the behavior of an upstream emitter with changing operating conditions, e.g., a 

power plant that is required to participate in grid power regulation, as pointed out by Wu 

et al. (2020), among others. In practice, this will incur changes in the flue gas inlet flow 

rate, the flue gas CO2 concentration, or both. The purpose of the NMPC is to obey the 

specific capture rate setpoint, as prescribed by the plant operator while approaching the 
point of optimal operation in terms of energy usage. The results indicate that the control 

system is responsive to large disturbances, even when the capture plant is pushed towards 

the constraints, i.e., its design- and operational boundaries. 

5. Conclusions 

NMPC has been demonstrated on pilot scale for a CO2 capture facility, using mechanistic 

process models in the Cybernetica CENIT control software. Two scenarios were studied 
to assess the viability of NMPC for industrial PCC: In the first scenario, reboiler duty was 

heavily restricted, temporarily. In response, the NMPC reduced the CO2 capture rate 

Scenario I: Energy availability for 

reboiler is (heavily) restricted 

Scenario II: Load following with large, 

rapid changes in inlet CO2 flow rate 
___ Actual values (solid) - - - Setpoints (dashed) …. Constraints (dotted) 

 

  
Figure 3: Results from live demonstration of optimal control using NMPC at the Tiller 

pilot plant, for two separate scenarios with challenging operating conditions. 
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temporarily to prevent an increase in lean loading. In the second scenario, the CO2 

concentration in the inlet stream varied rapidly and unpredictably. The CO2 capture rate 

was kept on the setpoint, despite these large deviations. This demonstration is important 

evidence of the robustness of the NMPC. As demonstrated in these scenarios, NMPC 

solutions are suitable for industrial application, with versatility for various solvents and 

plant-specific variations. Concerns regarding robustness and computational efficiency 

have been calmed after extensive testing in live operation. 
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