

IEAGHG 8th Post Combustion Capture Conference

16th to 18th September 2025 Marseille, France

Modelling CO₂ chemical absorption using the CESAR1 solvent

Diego Morlando^a, Hanna K. Knuutila^{a*}

^aNTNU, Gløshaugen, Sem Sælands vei 6, Trondheim 7034, Norway

Abstract

Reducing carbon dioxide (CO₂) emissions is a significant global challenge in combating climate change. Chemical absorption using aqueous amine solution is the most mature technology for post-combustion carbon capture [1]. An aqueous blend of 3 M 2-amino-2-methyl-1-propanol (AMP) + 1.5 M piperazine (PZ), also known as CESAR1, is considered the current benchmark of this technology [2]. However, experimental gaps in thermodynamics, kinetics and physical properties have been detected in the open literature [3]. In previous works, we filled some of these experimental gaps to accurately characterize the properties of the CESAR1 blend [4, 5].

Accurate data are needed to develop robust and reliable models that can be used for the design of CO_2 capture absorption process units. In this conference, we want to present the results of our modelling work of the CESAR1 blend. We developed an e-NRTL (electrolyte Non-Random Two-Liquid) thermodynamic framework for aqueous AMP/PZ/CO₂ solution in Aspen Plus. The model has been fitted on existing literature data and the new experimental results collected in our previous work [4]. Preliminary results of the thermodynamic modelling work are shown in Figure 1. The model developed in this work accurately predicts the CO_2 solubility for the CESAR1 blend over a broad range of temperatures, up to 150 °C. Furthermore, the model predicts well the liquid speciation of the CESAR1 blend, an important thermodynamic property that impacts the CO_2 absorption kinetics performance, by affecting the reaction reversibility, and all the thermodynamic properties calculated from the liquid speciation, i.e. solvent volatility.

^{*} Corresponding author. Tel.: +47-73594199

E-mail address: hanna.knuutila@ntnu.no

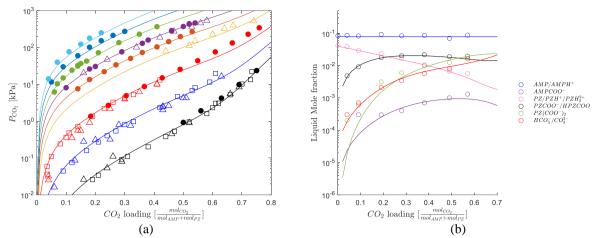


Figure 1: (a) CO_2 solubility of the CESAR1 blend (• [4], \Box [6], Δ [7]),(Black 40 °C, Blue 60 °C, Red 80 °C, Yellow 100°C, Orange 110 °C, Purple 120°C, Green 130°C, Dark Blue 140 °C, Cyan 150°C), (b) Liquid speciation of the CESAR1 blend at 25°C.

The thermodynamic model developed has been then used, in combination with mass transfer and kinetics modelling, to build a rate-based model that has been validated on two pilot plant campaigns, one performed at the University of Kaiserslautern [8] and one at the Technology Center of Mongstad (TCM) [9]. These two pilot campaigns are independent datasets used to validate the performance of the model developed starting from lab-scale data. Figure 2 shows the rich loading model predictions for the two experimental campaigns studied. The model predicts the rich loading within an absolute average relative deviation (AARD) of 1.8 % and 3.6% for the Kaiserslautern campaign and TCM campaign, respectively.

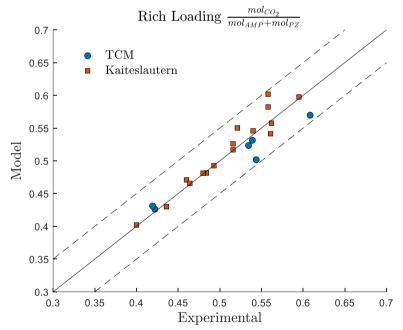


Figure 2: Comparison of the simulated and experimental CO₂ rich loading, (\bullet [9], \blacksquare [8]), the dashed line indicates a \pm 5 % deviation.

To conclude, at PCCC-8 we plan to present a new model for CO₂ absorption using aqueous AMP/PZ solutions. The

model performance will be assessed by comparing the model predictions with experimental lab scale data and pilot plant data.

Acknowledgements

This research has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement No. 101096521 (the AURORA project).

Keywords: Post-combustion Carbon Capture, amine-based absorption; thermodynamic Modeling, CESAR1 Solvent; Process modelling; Aspen Plus.

References

- 1. Dutcher, B., M. Fan, and A.G. Russell, *Amine-Based CO2 Capture Technology Development from the Beginning of 2013—A Review*. ACS Applied Materials & Interfaces, 2015. **7**(4): p. 2137-2148.
- 2. Feron, P.H.M., et al., *An update of the benchmark post-combustion CO2-capture technology*. Fuel, 2020. **273**: p. 117776.
- 3. Morlando, D., et al., *Available data and knowledge gaps of the CESAR1 solvent system*. Carbon Capture Science & Technology, 2024. **13**: p. 100290.
- 4. Morlando, D., A. Hartono, and H.K. Knuutila, *CO*₂ solubility, *N*₂*O* solubility, heat of absorption of *CO*₂, *pH* and liquid speciation data for *CO*₂ absorption in aqueous 2-amino-2-methyl-1-propanol (AMP) and piperazine (PZ) solutions. (Under submission). 2025.
- 5. Morlando, D., A. Hartono, and H.K. Knuutila, *Density and Viscosity of CO2-Loaded Aqueous 2-Amino-2methyl-1-propanol (AMP) and Piperazine (PZ) Mixtures.* Journal of Chemical & Engineering Data, 2024.
- 6. Hartono, A., et al., *New solubility and heat of absorption data for CO2 in blends of 2-amino-2-methyl-1-propanol (AMP) and Piperazine (PZ) and a new eNRTL model representation.* Fluid Phase Equilibria, 2021. **550**.
- 7. Brúder, P., et al., *CO2 capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1propanol.* Chemical Engineering Science, 2011. **66**(23): p. 6193-6198.
- 8. Mangalapally, H.P. and H. Hasse, *Pilot plant study of two new solvents for post combustion carbon dioxide capture by reactive absorption and comparison to monoethanolamine*. Chemical Engineering Science, 2011. **66**(22): p. 5512-5522.
- 9. Morgan, J., et al., *Development of Process Model of CESAR1 Solvent System and Validation with Large Pilot Data*. 2022.